

Non-standard interactions and LBNE

Mary Bishai

Physics with  $\nu_{II} \rightarrow \nu_{e}$ 

Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard

Discussion

# Non-standard interactions and LBNE LBNE-BNL Grp Mtg 1/8/10

Mary Bishai

January 8, 2010

# Outline

Non-standard interactions and LBNE

Mary Bishai

- Physics witl $u_{\mu} 
  ightarrow 
  u_{e}$
- $u_{\mu} 
  ightarrow 
  u_{ au}$
- Non standard interactions

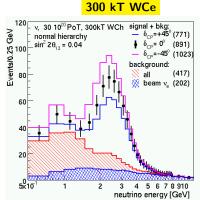
Discussio

- 1 Physics with  $u_{\mu} 
  ightarrow 
  u_{e}$
- 2 Physics with  $\nu_{\mu} \rightarrow \nu_{\tau}$
- 3 Non standard interactions
- 4 Discussion

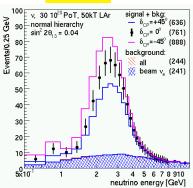


# LBNE/DUSEL spectra and event rates

Non-standard interactions and LBNE


Mary Bishai

Physics with  $u_{\mu} 
ightarrow 
u_{
m e}$ 


Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard interactions

A preliminary on-axis wide-band beam for LBNE based on the NuMI focusing system has been developed. Water Cerenkov response is based on the SuperK MC. LAr is modeled as a near-perfect detector. Exposure is 3 MW. yr  $\nu$  with  $\sin^2 2\theta_{13} = 0.04, \; \delta_{cp} > 0, \; m_3 > m_1$ 

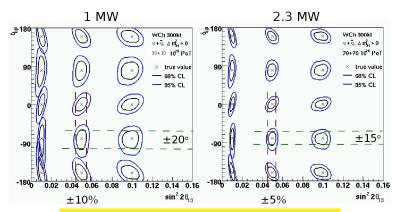


#### 50 kT LAr



Non-standard interactions and LBNE

Mary Bisha


Physics with  $\nu_{\mu} \rightarrow \nu_{\rm e}$ 

Physics with  $u_{\mu} 
ightarrow 
u_{oldsymbol{ au}}$ 

Non standard interactions

Discussion





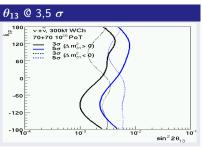
Precision measurement of  $\delta_{\rm cp}$  for  $\sin^2 2\theta_{13} \geq 0.01$ 

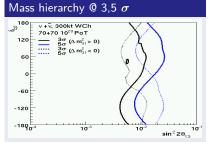


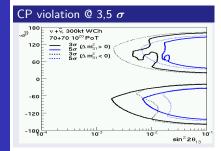
### LBNE Sensitivities

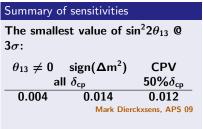
WCe, 2.3MW beam, 3 yrs  $\nu$  + 3 yrs  $\bar{\nu}$ 

Non-standard interactions and LBNE


Mary Bisha


Physics with  $\nu_{\mu} \rightarrow \nu_{\rm e}$ 


Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 


Non standar

Discussion







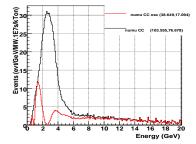


←□ → ←□ → ←□ →



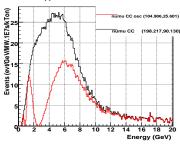
# Precision measurements of $u_{ au}$ appearance

Non-standard interactions and LBNE


Physics with  $\nu_{\mu} \rightarrow \nu_{\tau}$ 

Non standard

interactions


### NuMI-like beam (LBNE default)

#### dusel120 disappearance 1300km / 0km



#### **AGS-like HIGH ENERGY beam**

wble120 disappearance 1300km / 0km



AGS-HE beam rates:  $\nu_{\mu}$  rates: 40,000 unosc CC/100kT/MW.yr ( $10^{21}$  POT), 21,000 osc CC/100kT/MW.yr

We expect 420  $\nu_{ au}$  CC/100kT/MW.yr

- For a smaller LAr detector we can see 100's of  $\nu_{\tau}$  appear (compared to 3-4 events in DONUT and  $\sim$  10? in OPERA)
- For water Cerenkov  $\nu_{\tau}$  QE interactions followed by  $\tau \to \mu$ , e will produce an excess of QE-like  $\mu$  or e events at > 3.2 GeV energies.



### Interaction rates with different beams

Non-standard interactions and LBNE

Mary Bishai

Physics with  $u_{\mu} 
ightarrow 
u_{
m e}$ 

Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard interactions

Discussio

| Rates/ | 100kt/MW.yr | for $\sin^2 2\theta_{13}$ | = 0.04: |
|--------|-------------|---------------------------|---------|
| _      |             |                           |         |

| Beam                        | $ u_{\mu}$ CC | $ u_{\mu}$ osc. | $ u_{\rm e}$ CC beam | $ u_{\mu}  ightarrow  u_{ m e}$ | $ u_{\mu}  ightarrow  u_{	au}$ |
|-----------------------------|---------------|-----------------|----------------------|---------------------------------|--------------------------------|
| AGS 120<br>380m<br>on-axis  | 40K           | 21K             | 380                  | 560                             | 420                            |
| NuMI 120<br>380m<br>on-axis | 23K           | 9.0K            | 260                  | 460                             | 140                            |
| NuMI 120<br>280m<br>on-axis | 21K           | 7.8K            | 220                  | 400                             | 120                            |
| NuMI 60<br>280m<br>on-axis  | 18K           | 5.4K            | 180                  | 400                             | 40                             |

Even wide-band high energy beams produce large  $\nu_e$  appearance rates.

CPV sensitivity is worse but could expand other physics possibilities

Perhaps we should plan to run with HE some of the time....

Non-standard interactions and LBNE

Mary Bishai

Physics with 
$$u_{\mu} 
ightarrow 
u_{e}$$

Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard interactions

D:-----

### Neutrino oscillations including NSI

$$P_{\nu_{\alpha}^{\mathbf{S}} \rightarrow \nu_{\beta}^{\mathbf{d}}} = |\langle \nu_{\beta}^{\mathbf{d}} | e^{-i(H + V_{\mathrm{NSI}})L} | \nu_{\alpha}^{\mathbf{S}} \rangle|^{2} = |\langle \nu_{\beta}^{\mathbf{d}} | (1 + \varepsilon^{\mathbf{d}}) e^{-i(H + V_{\mathrm{NSI}})L} (1 + \varepsilon^{\mathbf{S}}) | \nu_{\alpha}^{\mathbf{S}} \rangle|^{2}$$

CC type NSI: Flavour mixture at source and detector (Grossman PL B359 (1995) 141)

$$\begin{split} |\nu_{\alpha}^{\mathcal{S}}\rangle &= |\nu_{\alpha}\rangle + \sum_{\beta = \mathbf{e}, \mu, \tau} \varepsilon_{\alpha\beta}^{\mathbf{s}} |\nu_{\beta}\rangle, \\ \langle \nu_{\beta}^{\mathbf{d}}| &= \langle \nu_{\beta}| + \sum_{\gamma \in \mathcal{S}} \varepsilon_{\alpha\beta}^{\mathbf{d}} \langle \nu_{\alpha}| \\ \end{split} \qquad \qquad \text{e.g. } \pi^{+} \xrightarrow{\varepsilon_{\mu\theta}^{\mathbf{s}}} \mu^{+} \nu_{\theta} \\ \text{e.g. } \nu_{\tau} N \xrightarrow{\varepsilon_{\tau\theta}^{\mathbf{d}}} e^{-} X \end{split}$$

NC type NSI: Extra matter effects in propagation
 Wolfenstein PR D17 (1978) 2369, Valle PL B199 (1987) 432, Guzzo Masiero Petoov PL B250 (1991) 154, Roulet PR D44 (1991) R935, etc.

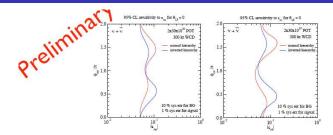
$$(V_{\rm NSI})_{\alpha\beta} = \sqrt{2} G_F N_{\rm e} \varepsilon_{\alpha\beta}^m$$



# Non Standard Interaction Sensitivities

300 kt WCe, 1MW beam, 3 yrs u+3 yrs ar
u

Non-standard interactions and LBNE


Mary Bishai


Physics wit  $\nu_{\mu} \rightarrow \nu_{\rm e}$ 

Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard interactions

Discussion





Hiroshi Nunokawa, SP, Renata Zukanovich-Funchal





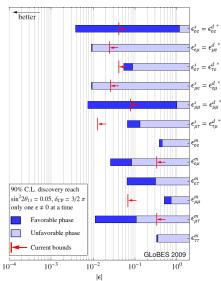
### Non Standard Interaction Sensitivities

300 kt WCe, 1MW beam, 3 yrs u + 3 yrs  $ar{
u}$ 

Joachim Kopp, FNAL

Non-standard interactions and LBNE

Mary Bisha


Physics wit  $\nu_{\mu} \rightarrow \nu_{\rm P}$ 

Physics with  $u_{\mu} 
ightarrow 
u_{ au}$ 

Non standard interactions

Discussio





Bounds can be improved up to one order of magnitude.

Current bounds from arXiv: 0907.0097



# Discussion points

Non-standard interactions and LBNE

Mary Bisha

 $u_{\mu} 
ightarrow 
u_{
m e}$  Physics with

 $u_{\mu} 
ightarrow 
u_{ au}$ 

interactions

Discussion

- Need to evaluate running with high energy beam tunes/designs part of the time to access more physics. This impacts beamline design and cost - will movable targets and horns.
- How can we improve far detector performance and sensitivity to new physics - such as NSI?
- ND physics sensitivity and design what is BNL's involvment?